Properti dan Pasangan Transformasi Fourier
Tabel properti:
| Properti | \(\boldsymbol{f(t)}\) | \(\boldsymbol{F(\omega)}\) |
|---|---|---|
| Linearity | \(a_1f_1(t)+a_2f_2(t)\) | \(a_1F_1(\omega)+a_2F_2(\omega)\) |
| Scaling | \(f(at)\) | \(\frac{1}{|a|}f\left(\frac{\omega}{a}\right)\) |
| Time shift | \(f(t-a)\) | \(e^{-j\omega a}F(\omega)\) |
| Frequency shift | \(e^{j\omega_0 t}f(t)\) | \(F(\omega-\omega_0)\) |
| Modulation | \(\cos(\omega_0 t)f(t)\) | \(\frac{1}{2}[F(\omega+\omega_0)+F(\omega-\omega_0)]\) |
| Time differentiation | \(\frac{df}{dt}\) \(\frac{d^n f}{dt^n}\) |
\(j\omega F(\omega)\) \((j\omega)^n F(\omega)\) |
| Time integration | \(\int_{-\infty}^{t}f(t)\,d(t)\) | \(\frac{F(\omega)}{j\omega}+\pi F(0)\delta(\omega)\) |
| Frequency differentiation | \(t^nf(t)\) | \((j)^n\frac{d^n}{d\omega ^n}F(\omega)\) |
| Reversal | \(f(-t)\) | \(F(-\omega)\) or \(F^*(\omega)\) |
| Duality | \(F(t)\) | \(2\pi f(-\omega)\) |
| Convolution in \(t\) | \(f_1(t)*f_2(t)\) | \(F_1(\omega)F_2(\omega)\) |
| Convolution in \(\omega\) | \(f_1(t)f_2(t)\) | \(\frac{1}{2\pi}F_1(\omega)*F_2(\omega)\) |
Tabel pasangan:
| \(\boldsymbol{f(t)}\) | \(\boldsymbol{F(\omega)}\) |
|---|---|
| \(\delta (t)\) | \(1\) |
| \(1\) | \(2\pi\delta(\omega)\) |
| \(u(t)\) | \(\pi\delta(\omega)+\frac{1}{j\omega}\) |
| \(u(t+\tau)-u(t-\tau)\) | \(2\frac{\sin \omega\tau}{\omega}\) |
| \(|t|\) | \(\frac{-2}{\omega ^2}\) |
| \(\text{sgn}(t)\) | \(\frac{2}{j\omega}\) |
| \(e^{-at}u(t)\) | \(\frac{1}{a+j\omega}\) |
| \(e^{at}u(-t)\) | \(\frac{1}{a-j\omega}\) |
| \(t^n e^{-at}u(t)\) | \(\frac{n!}{(a+j\omega)^{n+1}}\) |
| \(e^{-a|t|}\) | \(\frac{2a}{a^2+\omega ^2}\) |
| \(e^{j\omega_0 t}\) | \(2\pi\delta (\omega-\omega_0)\) |
| \(\sin \omega_0 t\) | \(j\pi [\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]\) |
| \(\cos \omega_0 t\) | \(\pi [\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]\) |
| \(e^{-at}\sin \omega_0 t\,u(t)\) | \(\frac{\omega_0}{(a+j\omega)^2 +\omega_0^2}\) |
| \(e^{-at}\cos \omega_0 t\,u(t)\) | \(\frac{a+j\omega}{(a+j\omega)^2 +\omega_0^2}\) |
---
Blog archive: Years / Categories / Tags